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Abstract

Linkages between healthy forests and human well-being are often theorized, yet the magnitude

of benefits remains unknown. This paper uses a natural experiment to assess the welfare

consequences of changes in forest health across the American West. My empirical analysis

relies on plausibly random variation in tree mortality generated by the thermal threshold at

which cold-induced mortality occurs in bark beetles. I find that forest die-off has significant

and economically meaningful impacts on both the market value of forests and the non-market

benefits these ecosystems provide. I estimate that over the last two decades, tree mortality in

the American West decreased the value of timber tracts by $1.1 billion, decreased home values

by $16.5 billion, and increased damages from air pollution, wildfire, and floods by a combined

$921 million. In a back-of-the-envelope calculation, I find that the death of a tree in my sample

costs society $43 in foregone benefits.

∗I am deeply grateful to Solomon Hsiang, Joseph Shapiro, and Maximilian Auffhammer for their advice, support,
and guiding discussions. I also thank Wolfram Schlenker, Michael Anderson, Meredith Fowlie, David Anthoff, Reed
Walker, Lara Kueppers, Jonathan Proctor, Andrew Hultgren, and seminar participants at UC Berkeley, Stanford,
and Columbia for helpful comments and suggestions. This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship Program under Grant No. 1106400. Any opinions, findings, or
conclusions expressed in this material are those of the author and do not necessarily reflect the views of the NSF.



1 Introduction

Trees and forests are valued for tradable goods such as timber, but they deliver other welfare-

enhancing services — including air purification, flood regulation, and scenic landscapes — that lack

a formal market and are traditionally absent from society’s balance sheet. As a result, the magnitude

of the benefits that forests provide to humankind remains largely unknown. A common concern is

that policy-makers and land managers might undervalue resources that are not quantified, impeding

proper management (Costanza et al., 2014). This concern is particularly salient for forests, which

face significant challenges to their persistence and health. While forests have long been subject

to over-exploitation, recent research suggests that forests have become increasingly vulnerable to

climate and associated pest-induced tree mortality events (Allen et al., 2010; Millar and Stephenson,

2015; Van Mantgem et al., 2009). A large ecological literature demonstrates that forest die-off can

rapidly alter the size, age, and spatial structure of forests, but the welfare changes assocciated with

tree mortality have yet to be quantified (Anderegg et al., 2013).

This study evaluates the impact of tree mortality on the value of forests in the American West.

I measure the economic value of forest products that can be harvested and sold in the market

using the per acre sales price of publicly owned timber tracts — forested lands for which extraction

rights are sold to the highest bidder. To capture non-market value, I use the hedonic pricing

method to estimate willingness to pay for the environmental goods and services that trees provide.

To further shed light on how tree mortality impacts coupled human–environment systems, I also

examine the impact of tree mortality on three dimensions of environmental quality with important

welfare implications — air quality improvement, flood mitigation, and wildfire risk. The analysis

focuses on tree mortality in particular because the time-varying nature of mortality allows for a

uniquely tractable evaluation of the contribution of trees to human well-being. But it is worth

noting from the outset that while my results offer new insight into the economic value of forests,

tree mortality is only one dimension of forest degradation and its impacts are likely to differ from

those of deforestation.

A key challenge in the ecosystem services literature has been establishing causal links between

1



ecosystems and human well-being. In an ideal experiment, the researcher would observe many

forests, randomly assign them different levels of tree mortality, and evaluate how these tree mortality

“treatments” altered social and economic outcomes. However, it is rarely possible to experimentally

manipulate ecosystems at scale. Therefore, existing work primarily determines the effect of changes

in forest health on ecosystem services by making assumptions about the equilibrium condition of

the forest to use as a reference, by comparing forests to themselves before versus after a mortality

event, or by comparing forests affected by tree mortality to an unaffected “control” site. A small

collection of observational studies establish negative associations between tree mortality events and

ecosystem services such as timber production, recreation, and hazard protection (Thom and Seidl,

2016). However, because these papers do not exploit quasi-experimental conditions, it is not clear

whether the relationships they document are causal or correlational.

The primary concern is that the timing and location of forest die-off is likely correlated with other

factors that also influence human well-being directly. For example, when using a cross-sectional

model to evaluate the impact of Sudden Oak Death on property values in Marin County, California,

Kovacs et al. (2011) find that the effect is difficult to identify, with parameter estimates fluctuating

between positive and negative across different model specifications. The authors postulate that these

results are likely due to the presence of observable characteristics (e.g. soil moisture) correlated

with Sudden Oak Death. Because tree mortality is highly dependent on time-varying factors such

as temperature and precipitation, which also influence ecosystem services directly, omitted variables

bias may persist even when controlling for unobserved differences between locations.

My analysis overcomes this challenge by exploiting a natural experiment where plausibly random

variation in tree mortality is generated by differences in pest exposure. Tree mortality is influenced

by the interaction of many complex factors, including stand conditions, climate, and exposure

to damage agents. Rather than attempting to model all of these pathways simultaneously, this

study models just one factor that generates experiment-like conditions: the specific temperature

requirements of bark beetles. Bark beetles, which are a leading cause of tree mortality in the

American West, are among a class of freeze intolerant insects that cannot withstand the freezing of

body tissues. In these species, the supercooling point refers to the temperature at which lethal ice
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crystals form in the insect tissue (Régnière and Bentz, 2007). I show that in years with more days

below the supercooling point, fewer bark beetles survive the winter, resulting in significantly lower

levels of tree mortality that summer. Intuitively, this natural experiment allows me to compare a

forest to itself in years with similar temperature and rainfall distributions, but in some years the

forest is “treated” with one additional day below the supercooling point and thus experiences less

tree mortality.

In practice, I compare many different forests to themselves over time using an instrumental

variables approach that controls flexibly for potentially confounding climate variables and accounts

for unobserved time-invariant factors, such as geography and soil type, as well as state-specific time-

trending variables, such as trends in local economic conditions. To implement this approach, I first

model cold-induced mortality in bark beetles using an entomological model developed by Régnière

and Bentz (2007). This model allows me to generate location-specific estimates of the proportion

of bark beetles to survive the winter each year, the instrument used for identification throughout

the paper. Next, I establish that there is a strong positive correlation between the instrument and

annual tree mortality. Finally, using the plausibly random changes in tree mortality generated by

the natural experiment, I estimate the effect of forest die-off on social and economic outcomes.

Under my estimation strategy, a few empirical concerns remain. First, my approach requires

the assumption that the instrument I use to generate plausibly exogenous changes in tree mortality

does not affect ecosystem service outcomes through a channel other than tree mortality. To test

whether the instrument is identifying generic patterns between climate and ecosystem services, I

conduct a placebo test that checks for correlations between the instrument and the outcomes of

interest in forested areas without bark beetles. Second, the measured benefits may represent a lower

bound on the true value of forests if the effects of tree mortality persist over time or there are spatial

spillovers in the benefits of healthy trees. I investigate these possibilities using models that include

temporal and spatial lags. Third, my natural experiment identifies a local average treatment effect

(LATE) — the average effect of tree mortality caused by bark beetles. If beetle-induced mortality

has a different effect on ecosystem services than other types of tree mortality, the LATE I identify

will differ from the “average treatment effect” (ATE) of tree mortality. To probe this possibility,
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I investigate one critical way in which beetle-caused tree mortality is known to differ from other

types of mortality — the degree of spatial clustering in mortality. Finally, it is worth noting that

my estimates reflect the effect of tree mortality across all forests in the Western US; however, I

recognize forests comprise a diverse set of ecosystems with different capacities to provide goods

and services. Future research should investigate heterogeneous effects across forests with different

compositions, age structures, stand conditions, and spatial scales.

The remainder of the paper is organized as follows. Section 2 describes the data and instrument

construction. Section 3 outlines my empirical approach. Section 4 presents my empirical estimates

for the effect of tree mortality on ecosystem services, along with several extensions, and a valuation

of forgone benefits. Section 5 discusses these findings and concludes.

2 Data and Instrument Construction

I provide a brief summary of the data sources, variable definitions, and construction of the bark

beetle survival instrument here; further details are provided in SI Appendix A. The sample spans

the years 1998 to 2018 and includes all forested areas in the Western US (Arizona, California,

Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming). I

restrict my analysis to the this region because bark beetles are most prevalent in western forests.

Forest health. I obtain data on tree mortality from the U.S. Forest Service (USFS) Insect and

Disease Survey (IDS), the primary method monitoring the health of the nation’s forests (USFS,

2019a). The IDS provides geospatial polygons outlining areas with tree mortality that has occurred

in the last 12 months. This information is collected via annual aerial and ground surveys using

Digital Mobile Sketch Mapping (DMSM) Systems. I pair the tree mortality polygons with informa-

tion on the spatial extent of forests from the National Land Cover Database (Homer et al., 2020).

Together, these two sources allow me calculate the percent of forest cover affected by tree mortality,

which serves as the primary measure of tree mortality used in this analysis.

I complement the tree mortality data with spatial information on the biological range of bark

beetles from the Forest Inventory and Analysis (FIA) unit’s National Forest Damage Agent Range
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Map (USFS, 2019b). The FIA uses ground surveys to estimate the amount of “basal area” (area

of land occupied by tree trunks) with damage attributable to bark beetles. While there are many

species of bark beetles, only a few cause extensive tree mortality. These “aggressive” species kill

either the entire tree or a portion of it during colonization and brood production. This analysis

includes the nine aggressive species known to cause extensive tree mortality in the western US:

the Douglas-fir beetle, Engraver beetle, Fir engraver, Jeffrey pine beetle, Mountain pine beetle,

Roundheaded pine beetle, Spruce beetle, Western balsam bark beetle, and Western pine beetle.

Although the Damage Agent Range Map is only available in the cross-section for the year 2012,

it allows me to construct a proxy measure for the baseline level of bark beetle prevalence in each

location. I define bark beetle prevalence as the percent of total basal area on which bark beetles

have been detected.

Economic and social outcomes. I measure the market value of forests using the per acre

sales price of timber tracts on public land. I obtain transition-level records from timber auctions

conducted by the USFS, the Bureau of Land Management (BLM), and state agencies from the

Timber Data Company. These data contain information on the bid prices for each timber tract, as

well as detailed attributes of the tract such as location, harvest acres, harvest volume, and estimated

logging costs. I determine the price per acre using the winning bids from oral ascending auctions

and second-price sealed bid auction, which should, in theory, reflect the buyer’s true valuation of

the resource.1 The per acre sales price of timber tracts captures the value of forest products that

can be harvested and sold in the market, but does not reflect the amenity and environmental quality

benefits of healthy trees because loggers and saw mills only purchase the right to extract resources

from public land rather than purchasing the land outright.

To capture non-market benefits, I use the hedonic pricing method to estimate willingness to pay

for the amenity and environmental quality benefits of healthy trees (see SI Appendix B.1 for details

on the hedonic method). Specifically, I examine capitalization of tree mortality into home values

using zip code-level data on the sales prices of single-family residences from Zillow Research. To fur-

1There is some evidence of strategic bidding in forest service auctions, even when incentive compatible mechanisms
are used (see Athey et al. (2011)). However, the estimated price distortions are quantitatively small (<1% of bid
value).
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ther probe the environmental quality benefits of forests, I also examine the impact of tree mortality

on three environmental services with important welfare implications — air quality improvement,

flood mitigation, and wildfire risk. I obtain annual, remotely-sensed measures of particulate matter

from the Global Annual PM2.5 Grids Data Set produced by NASA (van Donkelaar et al., 2018),

flood damages from the National Flood Insurance Program’s (NFIP) Redacted Policies and Claims

Data Set (Dombrowski et al., 2019), and wildfire burned area from the Monitoring Trends in Burn

Severity program (Eidenshink et al., 2007).

Climate data. Although tree mortality is only measured annually, temperature and precipitation

data are required at higher temporal resolution to construct the bark beetle survival instrument

and to capture non-linear relationships between climate, tree mortality, and ecosystem services.

I use daily temperature and monthly precipitation data from the PRISM Climate Group, which

provides gridded observations at 4km resolution (Daly et al., 2008). To preserve inter-annual

variability in weather, I bin the daily temperature record into 2°C intervals (e.g. count of days

with temperatures between 0°C and 2°C) and control for rainfall over the course of the year using

second-order polynomials in monthly precipitation.

Bark beetle cold tolerance model. The instrument used for identification throughout the

paper is a location-specific prediction of bark beetle winter survival. I generate the instrument

using a cold tolerance model developed by Régnière and Bentz (2007) that describes bark beetle

population success as a function of changes in the minimum daily temperature. The model predicts

cold-induced mortality when the minimum daily temperature drops below the insect’s supercooling

point. However, there is strong evidence that supercooling capacity in bark beetles fluctuates over

the course of a year. Cold hardening is the dynamic acquisition of cold tolerance in insects through

biochemical and physiological processes, and is most often triggered by cold temperatures (Lee Jr,

1989). To reflect this dynamic process, the model is based on a changing proportion of insects

in three cold-hardening states: (1) a non cold-hardened, feeding state, (2) an intermediate state

in which individuals have voided their gut content and eliminated as many ice-nucleating agents

as possible from their body, and (3) a fully cold-hardened state where insects have accumulated
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a maximum concentration of antifreeze proteins. Cold-induced mortality is estimated using the

equation:

p(survival)c,d = min

(
p(survival)c,d−1,

∑
s

ps,c,d
1 + exp(−(Tc,d − αs,c)/βs,c

)
(1)

where the dependent variable, p(survival)c,d is the probability of survival on day d in location c.

Here, ps represents the proportion of the insect population in each cold-hardening state (where

s is state 1, 2, or 3) and Tc,d is the minimum daily temperature. The parameters αs,c and βs,c

characterize the distribution of supercooling points accross insects in state s. These distributions

are described by logistic probability distribution functions found by fitting curves to the observed

supercooling points of insects collected in the field by Bentz and Mullins (1999).2 Thus survival

on each day is calculated the probability of survival in all three cold-hardening states, weighted by

the proportion of the population in each state. Because mortality is modeled as a selective process,

Equation 1 takes the minimum of this value and survival on the previous day.3

The level of winter survival for year t is simply the cumulative predicted survival rate on last

day of the season, τ ,

Survivalc,t = p(survival)c,τ (2)

This measure represents the proportion of bark beetles that survive the winter and will attack the

tree stock in year t. Winter survival is computed at the most granular spatial resolution for which

climate data is available, on the 4km resolution PRISM grid. To merge these data with information

on social and economic outcomes, which are measured at the zip-code level, I weigh by treed area

when aggregating the instrument over grid cells.

The cold tolerance model is illustrated in Figure 1 for a single location and year. Panel A

shows minimum daily temperature throughout the season, Td. Panel B plots the distribution of

2Because the supercooling point distribution functions estimated by Régnière and Bentz (2007) are specific to the
mountain pine beetle, I re-estimate their parameters to best fit the dominant bark beetle species in each location.

3The model assumes individuals in the population are more or less sensitive to cold relative to other individuals,
and that their relative positive on the cold-susceptibility scale remains the same over the season. Individuals that
survive a given cold event are not redistributed over the entire distribution of cold-resistance (survival on successive
days is not independent).
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Figure 1: Model to predict cold temperature-related survival in bark beetles. I model
cold-induced mortality in bark beetles following Régnière and Bentz (2007). See text for details.
This figure illustrates how the model is implemented for a single location and year. The model
inputs the minimum daily temperature record (A) and determines what proportion of insects have
supercooling points below the realized temperature for each day using the distribution of super-
cooling points (B) across insects in each cold-hardening state. The beetle population transitions
through three cold-hardening states over the course of the year (C). Using Equation 1, the model
predicts the cumulative proportion of bark beetles to survive each day (D).

8



supercooling points across insects in each cold-hardening state. Cold-induced mortality occurs when

the minimum temperature drops below the supercooling point. Panel C shows the proportion of

the population in each cold hardening state, ps,d, which is a function of minimum temperature to

date. Finally, Panel D shows the cumulative predicted survival rate of the population throughout

the year. Thus winter survival is a function of minimum daily temperature (Tt), the proportion

of insects in each cold-hardening state (ps,d), and the parameters that describe the distribution of

supercooling points in each state (αs and βs). Intuitively, there are cold-induced mortality events

when the minimum daily temperature drops early in the season, before sufficient cold-hardening

has occurred, or late in the season, when the beetles have already transitioned back to a feeding

state. For example, the dotted red line in Figure 1 shows a day in October where a sudden drop in

minimum temperature resulted in large reductions in the survival rate because nearly half of the

population was still in a non cold-hardened state.

3 Empirical approach

The goal of my empirical strategy is to capture the causal effect of tree mortality on ecosystem

services. The primary challenge is that because tree mortality is not randomly assigned, estimates

using standard approaches may be biased by reverse causality or omitted variables. Not only does

forest health impact the provision of ecosystem services (what I seek to measure), but society’s use

of forests also affects the health of these ecosystems. Consider the case of air pollution, for example.

It is theorized that trees remove air pollution by the interception of particulate matter on plant

surfaces, but there is also evidence to suggest that air pollution puts trees at higher risk of mortality

(Dietze and Moorcroft, 2011). Therefore, without exogenous variation in tree mortality, it is not

clear whether a positive correlation between tree mortality and air pollution indicates that tree

mortality increases air pollution, air pollution increases tree mortality, or the relationship goes in

both directions. Furthermore, tree mortality may be correlated with other factors, such as climate

or economic development, which also impact ecosystem services directly.

I overcome these challenge by examining changes in tree mortality generated by plausibly random
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variation in the level of bark beetle survival when the minimum temperature drops below the insect’s

supercooling point. However, since one might expect a given level of bark beetle winter survival to

have different effects in a forest with a low density of bark beetles as opposed to a forest with a high

density of bark beetles, I scale the predictions of bark beetle winter survival by the location-specific

measure of bark beetle prevalence constructed from the National Damage Agent Range Map.

I implement my empirical strategy using instrumental variables (IV).4 First, I estimate the

impact of bark beetle exposure on tree mortality, using the equation

Mist = πBist + θTist + γPist + αi + δst + µist (3)

where Mist is the percent of forest cover affected by tree mortality in zip code i, state s, and

year t. Bark beetle exposure, B, is modeled as the interaction between predicted winter survival

(the instrument) and bark beetle prevalence (the proportion of basal area on which bark beetles

have been detected).5 In my baseline specification, I model the response as a linear function of

bark beetle exposure, but because the functional form of this relationship has minimal precedent in

existing literature, I show the robustness of the results to two alternative specifications: piecewise

linear and quadratic. To address confounding issues stemming from the relationship between tree

mortality and weather, I control flexibly for temperature using 2°C daily temperature bins, T , and

rainfall using second-degree polynomials in monthly precipitation, P . I account for unobservable

differences in average levels of tree mortality between locations using zip code fixed effects, α, which

might arise, for example, because of different geographies or soil types. I also account for common

nonlinear trends in tree mortality and year-specific common shocks within each state using state-

year fixed effects δ. I assume that the disturbance term, µist, may exhibit spatial correlation as

well as autocorrelation within a location over time. To account for this, I estimate standard errors

4See SI Appendix B.2 for details on the instrumental variables research design.
5This approach resembles a Bartik-like (shift-share) instrument because I interact a plausibly exogenous, time-

varying instrument with a potentially endogenous, cross-sectional measure of exposure. However, my approach is
not subject to the same concerns about Bartik instruments raised in Goldsmith-Pinkham et al. (2020). In particular,
since the winter survival instrument varies not only by time period but also by zip code, the exogenous variation
generated by the instrument is preserved and the instrument does not simply act as a weighting matrix for the
potentially endogenous exposure measure. Further, the inclusion of zip code fixed effects in the regression controls
for cross-sectional differences in bark beetle prevalence.
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that are clustered in two dimensions (Cameron et al., 2011): within state-by-years and within zip

codes.

The parameter of interest is π, which describes the response of tree mortality to bark beetle

exposure. In the IV approach, Equation 3 allows me to generate plausibly exogenous changes in

tree mortality caused by changes in bark beetle survival at the supercooling point. However, the

estimate of π is also of direct interest to forest resource managers because it quantifies the change

in tree mortality that can be expected in response to a marginal increase in bark beetle exposure.

Next, I estimate the impact of tree mortality on ecosystem services using the equation

Outcomeist = βMist + γ1Tist + γ2Pist + αi + δst + εist (4)

where Outcomeist is one of the ecosystem service outcomes and all other variables are defined as

in Equation 3. I specify the dependent variable in levels for the value of timber tracts, such that

a one unit increase in the percent of forest cover with tree mortality changes the price per acre

of timber tracts by β dollars. Because process-based ecological models suggest that tree mortality

is most likely to have a multiplicative effect on environmental services (Thom and Seidl, 2016),

all other dependent variables are log-transformed.6 For example, the dependent variable in the

hedonic regression is the log mean value of homes in zip code i, such that a one unit increase in the

percent of forest cover with tree mortality changes the home values in zip code i by β percent. For

this part of the analysis, I limit my sample to zip codes in which bark beetles have been detected

since the instrument does not generate variation in tree mortality in forests without the pest. As

in Equation 3, standard errors are clustered two ways, by state-year and zip code.

My instrumental variables approach requires two assumptions. First, the instrument must

capture some of the variation in tree mortality, conditional on covariates. This assumption can be

directly tested by examining the parameter estimate of π in Equation 3. The second assumption

is that the instrument does not affect ecosystem service outcomes through a channel other than

tree mortality. Although this assumption can never be directly tested, I conduct a placebo test

6For example, the mechanism through which trees remove air pollution is the interception of particulate matter
on plant surfaces, thus the air pollution benefits of trees depend on the baseline level of pollution.
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that checks whether the instrument has an effect on ecosystem service outcomes in forested areas

without bark beetles. A null effect of the instrument in areas without bark beetles provides us with

confidence that the instrument is not simply picking up general correlations between climate (or

another unobserved factor) and ecosystem services.

4 Results

Predictions of bark beetle winter survival. I first generate location-specific predictions of the

proportion of bark beetles that survive the winter each year. The level of cold-induced mortality

predicted by this model in relation winter temperatures is in good agreement with numerous field

and laboratory studies of bark beetle species found in the American West (Bentz and Mullins,

1999; Cole, 1981; Safranyik, 1998). To provide a useful point-wise summary statistic, Figure 2A

plots the average (across years) winter survival in all forested areas. There is considerable regional

heterogeneity in winter survival, with lower rates in the Rocky Mountain region, where the temper-

ature frequently drops below the supercooling point, and higher rates in the milder climate of the

Sierra Nevada. Critically for the empirical analysis that follows, there is also substantial variation

in winter survival within a location over time. The standard deviation (SD) in winter survival over

the years 1998 to 2018 is 21 percentage points, on average across locations. As an example, panels

B and C of Figure 2 of plot the time series predictions for two forests: Sierra National Forest in

California and Bridger-Teton National Forest in Wyoming. While predicted winter survival rates in

California are consistently higher than those in Wyoming, my empirical strategy does not compare

forests across these two locations; rather, I compare the Bridger-Teton National Forest to itself in

years with relatively low versus high predicted survival rates (e.g. 2007 vs. 2010), while controlling

flexibly for potentially confounding climate factors.

The effect of bark beetle winter survival on tree mortality. I find that bark beetle exposure

has a strong positive effect on annual tree mortality. At the mean level of bark beetle prevalence

(6.6%), I estimate that a one percentage point increase in winter survival increases the percent

of forest cover affected by tree mortality by 0.016 (95% confidence interval [CI] = 0.013 to 0.018)
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Figure 2: Predictions of bark beetle winter survival. I predict the proportion of bark beetles
to survive the winter on a 4km grid. (A) The average (across years) predicted winter survival rate
at each location. (B) and (C) show examples of variation in the predicted survival rates over time
for locations in the Sierra National Forest and Bridger-Teton National Forest.

percentage points (Figure 3B). This amounts to a 21% increase in tree mortality per SD increase

in predicted winter survival. Estimation of the response function using more flexible functional

forms suggests that assuming a linear model is appropriate in this context. As a placebo test, I

also estimate the effect of winter survival in forests without bark beetles. Reassuringly, I do not

find an identifiable effect of predicted winter survival outside of the pest’s known range, suggesting

that the instrument is not simply picking up generic patterns between climate and tree mortality.

Next, I evaluate how the relationship between winter survival and tree mortality depends on the

baseline level of bark beetle prevalence in a forest. As expected, the marginal effect of winter survival

is increasing in bark beetle prevalence (Figure 3C). For example, I estimate that a one percentage

point increase in winter survival increases tree mortality by 0.007 (CI = 0.003 to 0.011) percentage

points at the first quartile of beetle prevalence (where beetles have been detected on 3% of basal

area) versus 0.034 (CI = 0.025 to 0.043) percentage points at the third quartile of beetle prevalence

(where beetles have been detected on 12% of basal area). In the baseline specification, I restrict

the effect of winter survival to scaling linearly with beetle prevalence, but using a non-parametric,
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binned approach to estimate the conditional effect yields similar results.

In sum, the effect of bark beetles on tree mortality depends strongly on the interaction between

the baseline prevalence of beetles within a forest and annual variations in temperature suitability

that determine short-term population success. These first stage results, reported for each subset

of the sample in Table A3, provide support for identifying assumption of the IV estimator that

requires the instrument to capture significant variation in tree mortality.

Reduced-form estimates of the effect of bark beetles on ecosystem services. Quantifying

the effect of bark beetles on ecosystem services has important implications for forest management,

but remains an open question in the literature because there is limited information on spatial

and temporal patterns of bark beetle exposure (Morris et al., 2017). A key benefit of generating

predictions of bark beetle winter survival is that it allows for the empirical estimation of this
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relationship. Panel A of Table 1 reports the estimated effects off bark beetle exposure on ecosystem

services. Recall that bark beetle exposure is defined as the interaction between predicted winter

survival and proportion of forested area on which bark beetles have been detected. Thus the

coefficient estimates reported in Table 1 can be interpreted as the effect of one percentage point

increase in bark beetle survival in a forest that is fully saturated with bark beetles. However, on

average, bark beetles have only been detected on 6.6% of basal area; therefore, the estimates should

need to be multiplied by 0.066 to be interpreted as the marginal effect of a one percentage point

increase in bark beetle winter survival in the average forest.

In the average forest, I estimate that a one percentage point increase in winter survival reduces

the price of timber tracts by 3.9 dollars per acre. The effect of beetle exposure on the volume of

timber available for harvest is negative and not significantly different from zero, indicating that the

price decline cannot be explained by forest managers increasing the supply of timber in the wake of

beetle outbreaks by opening up additional tracts for salvage logging. Rather, this finding suggests

that wood quality is diminished by beetle-induced mortality. Indeed, if beetle-killed logs are not

harvested shortly after mortality, they are more prone to reduced moisture content, checking, blue

stain, and rot (Lewis and Hartley, 2006), all of which may reduce their market value.

I also find a negative and significant impact of beetle exposure on local home values, estimating

that a one percentage point increase in winter survival reduces local home values by 0.002 percent at

the mean level of bark beetle prevalence. This finding suggests that bark beetles are an disamenity

that potential homeowners are willing to pay to avoid. The negative impact may in part be explained

by declines in the aesthetic value of forests, as the needles of beetle-killed trees turn red and then

drop following infestation. Additionally, beetle exposure may affect home values by negatively

impacting environmental services, such as hazard protection. Consistent with this hypothesis, I

find that bark beetle exposure increases air pollution levels, flooding damages, and wildfire risk.
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The causal effect of tree mortality on ecosystem services. I find that forest die-off has

significant and economically meaningful impacts on both the market value of forests and the non-

market amenity and environmental quality benefits these ecosystems provide (Table 1, Panel B). I

estimate that a one percentage point increase tree mortality reduces the price per acre of timber

tracts by $250; this amounts to a 8% decline in the value of timber tracts per standard deviation

increase in annual tree mortality. As with bark beetles, the effect of tree mortality on the volume of

timber available for harvest is negative and not significantly different from zero, indicating that the

price decline cannot be explained by an excess supply of timber after forest die-off events. My results

imply that even in the short-term, timber production losses are not offset by salvage logging after

a mortality event. Importantly, the damages to timber tract values caused by tree mortality have

direct implications for the welfare of local residents, as timber revenues are traditionally allocated

to funding local forest management activities, schools, and road projects.

I also find a strong negative effect of tree mortality on local property values, estimating that a

one percentage point increase tree mortality reduces mean home values by 0.15 percent. In terms

of magnitude, this finding is broadly consistent with case studies in California and New England

that find property values decline by 3 − 6% in neighborhoods with extensive mortality (Homer

et al., 2020; Kovacs et al., 2011). To shed light on potential channels through which tree mortality

may capitalize into property values, I also examine the effect of tree mortality on three dimensions

of environmental quality that have been shown to influence home values in other contexts — air

quality, flood risk, and wildfire burned area. I find that tree mortality reduces the hazard protection

value of forests for all three services. I estimate that a one percentage point increase in tree mortality

increases ambient PM2.5 concentrations by 0.11 percent, or 0.006 micrograms per cubic meter in

the average zip code. This finding is consistent with the predictions of process-based simulations

that model the interception and removal of fine particulate matter by tree surfaces (Beckett et al.,

1998). Additionally, I estimate that tree mortality increases damages from flooding by 0.75 percent

and wildfire burned area by 0.24 percent. While the mechanisms through which tree mortality

increases water flows and increases the quantity of fuel available for combustion are well-studied

(Bearup et al., 2014; Stephens et al., 2018), these estimates provide new empirical evidence on the
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real-world response of natural disaster damages to tree mortality in the America West.

The estimates reported here are robust to excluding controls for temperature and precipitation

(Table 1), using an alternative definition of tree mortality (SI Appendix, Table A4) and more flexible

functional form assumptions (SI Appendix, Figure A3). The estimated effects are also insensitive

the withholding of regional blocks of data (SI Appendix, Figure A4), indicating that my results

are not driven by one forest or die-off event in particular. In the sections that follow, I expand on

my baseline results by testing for the presence of temporal and spatial lags, conducting a placebo

test in forested areas without bark beetles, and examining one well-established way in which tree

mortality caused by bark beetles differ from other types of tree mortality.

Effect of tree mortality over time and space. The effects estimated using Equation 4 and

reported in Table 1 represent the contemporaneous effect of tree mortality in a given zip code on the

social outcomes in the same zip code. However, it is possible that the effects of tree mortality persist

over time or there are spatial spillovers. I investigate these possibilities by including temporal and

spatial lags of tree mortality in the regression model. I estimate the model

Outcomeist =

κ∑
k=1

βkMkist +

κ∑
k=1

γ1kTkist +

κ∑
k=1

γ2kPkist + αi + δst + εkist (5)

where k = 1, . . . , κ indicates either a set of spatial or temporal lags. As in the rest of the analysis,

the endogenous tree mortality variable is instrumented for using bark beetle exposure.

In the model with temporal lags, I simultaneously estimate the effect of tree mortality on

ecosystem services in the year of the mortality event, as well as in the year preceding and up to

three years following the event. This allows me to evaluate how the effect of tree mortality evolves

over time, as the effect of tree mortality that occurred one year ago is allowed to differ arbitrarily

from the effect of of tree mortality that occurred this year. It also provides a simple robustness

check on my identification strategy, as we should expect a null effect of future tree mortality (e.g.

tree mortality that occurs in the year 2000 should not effect ecosystem services in the year 1999).

In the spatial distributed-lag model, I include spatial lags with a width of 20 kilometers (km) out

to a maximum distance of 100 km. Once again, all spatial effects are estimated simultaneously such
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Figure 4: Models with temporal and spatial lags. (A) and (B) show the effect of temporal
lags of tree mortality on timber tract values (measured in price per acre) and log mean home
values, respectively. Years relative to tree mortality is shown on the x-axis, such the point estimate
located at x=1 can be interpreted as the effect of tree mortality that occurred one year in the
past. (C-F) show the effect of spatial lags of tree mortality on log mean home values, log PM2.5
concentrations, log flood damages as measured by NFIP claims, and log wildfire burned area,
respectively. Distance of tree mortality to the zip code is shown on the x-axis in 20km wide bins
(e.g. tree mortality 20-40km away from zip code i). All regressions include flexible controls for
temperature and precipitation, as well as zip code and state-year fixed effects. Whiskers shown
95% confidence intervals where standard errors are clustered two ways by state-year and zip code.
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that the regression equation controls for local levels of tree mortality.

I do not find evidence that the consequences of tree mortality for ecosystem services persist over

time, with the estimated effects returning to zero within three years (Figure 4A-B). It is possible

that in diverse forests, the loss or reduction in density of one species may be quickly compensated

for by other species filling the gap (Boyd et al., 2013; Hessburg et al., 2000). Indeed, moderate

tree mortality has been shown to increase understory growth and species richness in the following

seeason (Dhar and Hawkins, 2011; Stone and Wolfe, 1996). In Appendix C.4, I investigate whether

there is evidence of such regrowth in my data by examining how the normalized difference vegetation

index (NDVI) — a simple indicator of live green vegetation — is affected by past tree mortality. I

find that while NDVI drops sharply in the year of a tree mortality event, the indicator rebounds to

pre-mortality levels within three years. This rapid regrowth may offset the the negative impacts of

tree mortality on some ecosystem services, such as the aesthetic value of forests.

In contrast, the models that includes spatial lags of tree mortality do provide evidence of spatial

spillovers. For example, I find negative effects on home values for tree mortality out to a distance

of 60 kilometers (Figure 4C). This finding is implies that home owners are not only affected by

dead trees in their immediate neighborhood, but also by dead trees in the surrounding areas and

nearby woodlands. An examination of the spillover effects of tree mortality on the three environ-

mental services provides additional support for the theory that tree mortality has negative spatial

externalities (Figure 4D-F).

Placebo Test. The main threat to the validity of the analysis is that the instrument is picking

up climate factors that affect ecosystem services through a channel other than bark beetle-induced

tree mortality. As a placebo test, I check whether the instrument impacts ecosystem services in

forests without bark beetles (i.e. forests in which no basal area loss attributable to bark beetles

has been detected). If my identifying assumption holds, the marginal effect of an increase in the

instrument, conditional on covariates, should be negligible except when interacted with a dummy
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for bark beetle presence. The estimating equation for the placebo test is

Outcomeist = π1Survivalist+π2(Survivalist×IBeetlesi )+θIBeetlesi +γ1Tist+γ2Pist+αi+δst+νist

(6)

where IBeetles is a dummy variable for zip codes in which bark beetles have been detected. In

Equation 6, the instrument enters as the main effect, but the impact of bark beetle winter survival

is identified as the interaction between the dummy variable for areas with bark beetles and the

instrument. All other covariates from Equation 4 are included.

Results from the placebo test are shown in Table 2. The second row shows the differential effect

of the instrument in areas with bark beetles. The coefficient on the interaction term, Survival ×

IBeetles, always has the expected sign is statistically significant for four of the five outcomes. The

first row represents that effect of the instrument in areas without bark beetles. The coefficient

estimates are all at least an magnitude smaller than the interaction term and none are significantly

different from zero. These findings provide evidence that instrument is impacting ecosystem services

through beetle-induced tree mortality rather than capturing the effects of an unobserved factor on

ecosystem services. Finally, the third row is the sum of the first rows columns, and represents the

total effect of the instrument in areas with bark beetles. Consistent with the main analysis, higher

predicted bark beetle survival reduces the value of timber tracts and home values, while increasing

hazard risk from air pollution and flood damages.

One limitation to this placebo test is that forests with bark beetles do differ from those without

the pest in some respects. Most notably, forests with beetles have, on average, significantly more

forested area and higher levels tree mortality (Table A5). However, the the ecosystem service

outcomes I evaluate are comparable across the two samples (with the exception of wildfire) and the

temperature and rainfall distribution in both groups share a common support (Figure A6).

Heterogeneity based on the spatial distribution of tree mortality. The core benefit of my

natural experiment is that it allows for the identification of a causal effect. However, this approach

identifies a local average treatment effect (LATE) — the average effect of tree mortality caused by
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Dependent variable:

Timber Log mean Log Log flood Log wildfire
tract value home values PM2.5 damages burned area

(1) (2) (3) (4) (5)

Forests without beetles −0.0661 −0.0004 −0.00005 −0.00004 0.0003
(π1) (1.971) (0.0004) (0.00005) (0.0006) (0.0004)

Beetles interaction −1.766∗ −0.0014∗∗∗ 0.0021∗∗∗ 0.0150∗∗ 0.0025
(π2) (0.834) (0.0005) (0.0006) (0.0068) (0.0032)

Forests with beetles −1.832∗ −0.0014∗∗∗ 0.0021∗∗∗ 0.0150∗∗ 0.0027
(π1 + π2) (0.897) (0.0005) (0.0006) (0.0068) (0.0032)

Observations 15,925 28,831 59,736 59,736 59,736

Table 2: Placebo Test: The effect of winter survival in forests with and without bark
beetles. OLS estimates of equation (6). Timber tract value is reported in US dollars per acre. All
other outcomes are log-transformed, and the coefficient estimates have been multiplied by 100 for
demonstration purposes (so the reported value can be interpreted as the percentage point change in
the outcome for a one percentage point increase in winter survival). All regressions control flexibly
for weather and include zip code and state-year fixed effects. Standard errors (in parentheses) are
clustered by zip code and by state-year. Asterisks indicate statistical significance at the 10% (*),
5% (**), and 1% (***) levels.

bark beetles. It is possible that beetle-induced mortality has a different effect on ecosystem services

than other types of tree mortality. Although I cannot directly test for this type of heterogeneity

because the effect of tree mortality from other causes is not identifiable, I can investigate at least one

way in which beetle-induced mortality is different. It is well-established that tree mortality caused

by bark beetles exhibits a higher degree of spatial clustering than tree mortality from drought or

heat stress (Meddens et al., 2012). If tree mortality that is spatially clustered is more damaging

to ecosystem services than the same number of dead trees distributed over a larger area, then the

LATE identified by my empirical approach is likely to be different from the the “average treatment

effect” (ATE) of tree mortality from all causes.

I test whether the effect of tree mortality on ecosystem services depends on its spatial distribution

by implementing a variation of Equation 4 that uses Moran’s I to summarize the spatial structure

of tree mortality within each zip code. First, I impose a grid structure on the mortality polygons
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from the IDS data such that I have a 1km × 1km grid with measures of area affected by tree

mortality. Next, I calculate Moran’s I for tree mortality in each zip code i and year t using the

following equation

Iit =
N∑

j

∑
k wjk

×
∑
j

∑
k wjk(Mj − M̄)(Mk − M̄)∑

j(Mj − M̄)2

where j and k index grid cells in zip code i. Here, N is the number of grid cells in zip code i, Mj is

tree mortality in grid cell j, M̄ is the mean tree mortality (across grid cells) in zip code i, and wjk

is a matrix of spatial weights with zeros on the diagonal where the weights decrease linearly with

distance. The estimating equation is

Outcomeist = β1M̂ist + β2(M̂ist × Iist) + θTist + γPist + αi + δst + εist (7)

where Iist is the Moran’s I statistic described above and all other variables are defined as in Equation

4. Note that β1 is the main effect of tree mortality and β2 is the differential effect of tree mortality

based on its spatial distribution. As in the main analysis, tree mortality is instrumented for with

bark beetle exposure. Iist is positive when tree mortality is spatially clustered, zero when it is

randomly distributed, and negative when it is dispersed across space. Thus, if β2 has the same sign

as β1, this implies that spatial clustering in tree mortality increases damages from tree mortality.

In contrast, if the two coefficients have opposite signs, it indicates that spatial clustering dampens

the negative effect of tree mortality on ecosystem services.

The results are shown in Table 3. There is no clear pattern in whether β1 and β2 have the same

or opposite signs, and none of the coefficient estimates for β2 are statistically significant from zero.

Thus I do not find evidence that spatial clustering in tree mortality increases or decreases damages

from tree mortality for any of the ecosystem service outcomes. Note that while the magnitude of

β2 appears large in relation to β1 for flood and wildfire risk, more than 95% of observations with

positive values of tree mortality have values for I in the range of −0.25 to 0.25; therefore, the

differential effect of tree mortality based on spatial correlation rarely overshadows the main effect

of tree mortality.

23



Dependent variable:

Timber Log mean Log Log flood Log wildfire
tract value home values PM2.5 damages burned area

(1) (2) (3) (4) (5)

Mist (β1) −239.7∗∗ −0.14∗∗∗ 0.11∗∗ 0.71∗∗∗ 0.22∗∗

(113.4) (0.05) (0.03) (0.23) (0.09)

Mist × I (β2) 11.7 −0.07 −0.001 0.52 −0.77
(17.8) (0.13) (0.002) (0.93) (0.56)

Observations 9,817 17,953 37,240 37,240 37,240

Table 3: Heterogeneity based on the spatial distribution of tree mortality. I test whether
the effect of tree mortality depends on its spatial distribution by re-running Equation 4 but this
time including an interaction between tree mortality and a measure of the spatial structure of tree
mortality (Moran’s I). The regressions controls flexibly for weather and includes zip code and
state-year fixed effects. Standard errors (in parentheses) are clustered two ways by state-year and
zip code. Asterisks indicate statistical significance at the 10% (*), 5% (**), and 1% (***) levels.

While I do not find evidence the effect of tree mortality on ecosystem services depends on its

spatial distribution, this analysis does not rule out other differences, such as how different causes

of death affect the quality of wood or the integrity of the root structure. These differences are

more difficult to investigate with existing data but merit further investigation. Thus the estimates

provided here should be interpreted as the effect of tree mortality caused by bark beetles, and

caution should be exercised when extrapolating these values to other types of tree mortality. Still,

the effect of beetle-induced mortality is highly policy-relevant as bark beetles are the leading cause

of tree mortality in the Western US, having damaged more than 58 million acres since 2000.

Valuing the social cost of tree mortality. To provide a sense of scale for the damages caused

by tree mortality in the American West, I extend my results to estimate the social cost of tree

mortality that has occurred over the last two decades. The social cost is computed by combining

the estimated marginal effects with location-specific measures of annual tree mortality and the

geographic distribution of people and capital (see SI Appendix D for additional details).

I find that between 1998 and 2018, tree mortality in American West decreased the value of
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timber tracts by $1.1 billion; this amounts to 9.6% of total revenues from timber sales. Over the

same period, I estimate that tree mortality decreased home values in the region by $16.5 billion. In

the most severely affected counties, including Larimer, Jackson, and Gilpin in Colorado, housing

values declined 1.5% and 2% in response to widespread mortality (> 10% of forest cover). It is

noteworthy that the effect of tree mortality on non-market benefits, as measured by capitalization

into home values, is an order of magnitude larger than the impact on the value of forest products

that can be harvested and sold in the market, as measured by timber sales. Finally, I estimate that

tree mortality increased damages from air pollution, wildfire, and flooding by $233 million, $676

million, and $12 million, respectively, per year.

My estimates imply a social cost of approximately $17.6 billion if we sum the damages to

timberland and housing values alone. In theory, the hedonic estimates should capture the full

amenity and environmental quality costs of tree mortality, so I elect not to include the economic

costs of increased air pollution exposure, flood damages, or wildfire risk in this calculation. However,

there are at least three reasons why my total social cost estimate should be interpreted as a lower

bound. First, people most likely have incomplete information about levels of tree mortality and their

welfare implications, suggesting that non-market values may not fully capitalize into property prices.

Second, these numbers do not account for temporal or spatial spillovers in costs of tree mortality

beyond the distances I include in my distributed lag models. For example, because the changes

to carbon dynamics caused by tree mortality have welfare implications that are geographically

disperse and may persist over decades, these costs are not fully captured by my approach. Third,

my estimates do not account for non-use (“existence”) values.

Figure 5 shows heterogeneity in the cost of tree mortality across counties. Notably, these

estimates assume the same response functions across all counties, and spatial heterogeneity reflects

differences in the level of tree mortality, geographic distribution of timberland, and value of the

housing stock. As one might expect, reductions in the value of timberland versus housing are

concentrated in different geographic areas. Rural, timber-producing regions such as Plumas County,

CA experience the largest declines in timber tract revenues, while the costs to housing value are

most pronounced in localities with a high density of homes (e.g. Southern California). Similar to
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A   Tree mortality B   Timber tract values
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Percent of forest cover with mortality
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0 0.5 1.0 2.01.520 255 10

Figure 5: The social cost of tree mortality in the American West. See SI Appendix D
for estimation details. (A) Average (across years) percent of forest cover with tree mortality by
county. (B) Annual reductions timber tract revenues, reported in million dollars (C) Reductions in
the value of the housing stock, reported in billion dollars.

the effect on housing values, the largest social costs from reduced capacity to provide regulating

services such as air quality improvement and flood protection occur in areas where high levels of

tree morality coincide with high population densities.

Conclusion

This paper exploits a natural experiment to assess the welfare consequences of changes in forest

health. I demonstrate that the thermal threshold at which cold-induced mortality occurs in damage

agents such as bark beetles can be used to isolate plausibly random changes in tree mortality. I then

use this quasi-experimental setting to quantify the effect of tree morality on ecosystem services in

the American West. I find that tree mortality has significant and economically meaningful impacts

on both the market value of forests and the non-market amenity and environmental quality benefits

these ecosystems provide. I estimate that over the last two decades, tree mortality has reduced

the social value of forests by approximately $17.6 billion, with the majority of the damages coming

from non-market benefits.
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My results have important policy implications. Tree mortality rates are only expected to worsen

in the coming decades as changing temperature and precipitation patterns lead to increased heat

stress, drought, and movement of damage agents to higher latitudes and elevations (Allen et al.,

2010; Bentz et al., 2010). Yet, federal funding for forest health issues has declined sharply in recent

years (Gandhi et al., 2019). Management of forest die-off poses unique challenges given the rapid

development, extensive spatial scale, and severity of recent tree mortality events (Seybold et al.,

2018). Two broad approaches are used: long-term prevention techniques to increase stand resilience

(silviculture) and suppression measures to control pest outbreaks or remove dead trees after the

damage has already occurred. While silvicultural techniques are thought to be the most effective

approach in the long-run, these expenses can be hard to justify when communities cannot yet see

the costs of inaction (Samman and Logan, 2000). With costs in the range of $100 to $1,000 per

acre, the expense of implementing silviculture practices throughout American forests would exceed

current levels of public funding for investments in forest health (Donovan and Brown, 2005).

By quantifying the social cost of tree mortality, my findings can assist decision makers in trading

off the costs and benefits of investments in forest health. To provide a simple heuristic for evaluating

the cost effectiveness of such investments, I perform a back-of-the-envelope calculation to estimate

a social cost for each dead tree. I estimate that the death of a tree in my sample costs society $43 in

foregone benefits.7 While this value and the other empirically-derived values reported in throughout

the analysis are intended to inform policy, practitioners employing benefits transfer should exercise

caution as my estimates represent the average social cost of beetle-caused tree mortality in the

American West, but my results may not be representative of all regions or forest types. Indeed,

as Figure 5 demonstrates, the cost of tree mortality is highly dependent on the local exposure of

people and capital.

Methodologically, I contribute to the literature by demonstrating how plausibly exogenous

variation in ecosystem health generated by a biological threshold can be used to generate quasi-

experimental conditions. Conceptually similar approaches have been used to study the effects of

7This calculation is done by dividing my estimate of total social cost of tree mortality over the years 1998 to 2018
by the number of dead trees over the same period, as reported in the Insect and Disease Detection Survey annual
reports.

27



insects on human health (Frank, 2017) and economic development (Alsan, 2015); however, to my

knowledge, this is the first paper to exploit a such a threshold to identify causal effects in the

context of ecosystem loss or degradation. Given that causal inference is particularly challenging in

this literature and a number of biological thresholds are well established, this approach could be

applied more broadly. For example, one might study the effect of changes in the health of coral reef

ecosystems using the thermal threshold at which coral bleaching occurs.

I use a reduced-form statistical approach that captures the real-world response of ecosystem

services to changes in forest health without requiring that I explicitly model the underlying mech-

anisms (e.g. I estimate the response of flood damages to tree mortality without modelling changes

to the hydrological cycle). This methodology is particularly useful in the context of forest degrada-

tion, where the impact of tree mortality on many ecosystem functions remains uncertain (Anderegg

et al., 2013). However, my results should be not viewed as a substitute for process-based mod-

els that characterize the causal pathways between tree mortality and ecosystem services. Instead,

my findings are intended to complement these process-based models by, for example, helping to

calibrate the values of key parameters.

I conclude by noting two additional limitations of my study. For one, I only examine a handful

of the many benefits forests provide to society. In addition to the ecosystem services evaluated

here, forests provide critical ecological functions such as carbon storage and sequestration, nutrient

cycling, water purification, and wildlife habitat. While some of these benefits may capitalize into

local property values, the full value of services with large off-site benefits are unlikely to be captured

by my approach. Carbon storage and sequestration is a prominent example of such a service, and

while this is perhaps the best studied regulating service provided by forests, most of our current

understanding comes from process-based models rather than empirical evaluations (Fei et al., 2019).

Relatedly, my findings offer new insight into the economic value of forests, but they provide an

incomplete picture because I only observe the effects of forest die-off and not deforestation. Because

regeneration can rapidly replace lost biomass, there are many reasons to believe the that forest die-

off is far less damaging to ecosystem services than conversion of the land to another use. However,

it is worth noting that deforestation generally contributes to human well-being in other ways, such
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as allowing for increased food production or economic development; whereas, society receives fewer

direct benefits in return for forest degradation.
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A Data Appendix

A.1 Variable definitions and construction

Variable Description Construction

Tree mortality (M) Percent of forested area in which
tree morality has been detected.

M = Acres with tree mortality
Acres of forest cover

Beetle prevalence (D) Percent of basal area on which bark
beetles have been detected.

D = Basal area with beetle damage
Total basal area

Winter survival (WSI) Prediction of the proportion of
bark beetles to survive the winter.

Constructed using a cold tolerance
model developed by Régnière and
Bentz (2007). See Methods.

Beetle exposure (B) Proportion of beetles to survive
the winter, scaled by a location-
specific proxy mesure for bark bee-
tle prevalence.

B = WSI ×D

Temperature controls (T ) Vector of daily temperature bins.
These variables count of the num-
ber of days with mean tempera-
tures in 2°C intervals (e.g. number
of days with a mean temperature
in the range 0°C to 2°C).

T = (T1, T2, ...T31) where there are
31 bins, Tk, ranging from −30°C to
30°C in 2°C intervals. Tk =

∑
d td

where td = 1 if the mean tempera-
ture on day d was in interval k and
td = 0 otherwise.

Precipitation controls (P ) Vector of second-order polynomials
in monthly precipitation.

P = (P1, P2, ...P12) where Pm, is
a second-order polynomial in total
precipitation for month m.

Zip code fixed effects (αi) Capture unobserved time-invariant
factors in each location.

Dummy variable for each zip code.

State-year fixed effects (δst) Capture common nonlinear trends
and year-specific common shocks
within each state.

State by year dummy variables.

Ecosystem services (Outcome) One of five social or economic out-
comes quantifying the benefits hu-
mans derive from forests.

Outcome is equal to the price per
acre of timberland, log mean home
value, log PM2.5 concentrations,
log flood damages, or log wildfire
burned area.

Table A1: Variable descriptions and construction. This table describes the variables used
in this analysis and how they are constructed from the raw data. Details on each data source are
provided in the Data Appendix that follows.
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A.2 Summary Statistics

Mean St.Dev. Min. Max. N

Forest health data
Area affected by tree mortality (acres) 1,438 7,527 0 363,530 59,736
Forested area (acres) 69,683 114,191 44 1,752,152 59,736
Percent of forest with tree mortality (%) 1.11 3.36 0.00 24.89 59,736
Basal area with bark beetles (square feet per acre) 123 353 0 7,836 59,736
Total basal area (square feet per acre) 1,166 2,331 0.02 47,741 59,736
Bark beetle prevalence (%) 4.11 4.64 0.00 27.15 59,736
Indicator for bark beetles 0.62 0.48 0.00 1.00 59,736

Ecosystem service outcomes

Timberland value (price per acre) 6,619 11,230 0.025 623,448 17,667
Harvest volume (thousand board feet) 2,604 2,812 1 31,215 17,667
Mean home value ($) 223,084 199,350 16,553 3,361,,445 28,831
Ambient PM2.5 concentrations (µg/m3) 5.47 2.21 0.70 26.85 59,736
Flood insurance claims ($) 7,732 192,478 0 20,168,074 59,736
Wildfire burned area (acres) 366 3,105 0 240,960 59,736

Climate controls
Days with temperature < −30°C 0.00 0.06 0.00 3.71 59,736
Days with temperature −30°C to −28°C 0.01 0.12 0.00 4.71 59,736
Days with temperature −28°C to −26°C 0.03 0.20 0.00 6.00 59,736
Days with temperature −26°C to −24°C 0.05 0.30 0.00 9.00 59,736
Days with temperature −24°C to −22°C 0.10 0.42 0.00 7.97 59,736
Days with temperature −22°C to −20°C 0.16 0.58 0.00 12.00 59,736
Days with temperature −20°C to −18°C 0.27 0.82 0.00 15.52 59,736
Days with temperature −18°C to −16°C 0.45 1.10 0.00 16.00 59,736
Days with temperature −16°C to −14°C 0.76 1.56 0.00 17.00 59,736
Days with temperature −14°C to −12°C 1.28 2.32 0.00 20.65 59,736
Days with temperature −12°C to −10°C 2.16 3.44 0.00 28.00 59,736
Days with temperature −10°C to −8°C 3.57 5.02 0.00 32.00 59,736
Days with temperature −8°C to −6°C 5.61 6.90 0.00 38.85 59,736
Days with temperature −6°C to −4°C 8.36 8.94 0.00 48.15 59,736
Days with temperature −4°C to −2°C 11.69 10.95 0.00 53.51 59,736
Days with temperature −2°C to 0°C 15.52 12.58 0.00 62.00 59,736
Days with temperature 0°C to 2°C 19.54 13.11 0.00 64.58 59,736
Days with temperature 2°C to 4°C 23.36 12.47 0.00 69.00 59,736
Days with temperature 4°C to 6°C 26.72 12.29 0.00 76.13 59,736
Days with temperature 6°C to 8°C 28.82 12.29 0.00 83.00 59,736
Days with temperature 8°C to 10°C 29.50 11.80 0.00 101.00 59,736
Days with temperature 10°C to 12°C 29.09 11.47 3.00 117.00 59,736
Days with temperature 12°C to 14°C 28.67 12.59 6.83 142.00 59,736
Days with temperature 14°C to 16°C 28.12 12.41 1.59 137.06 59,736
Days with temperature 16°C to 18°C 26.93 11.06 0.00 112.00 59,736
Days with temperature 18°C to 20°C 24.12 10.98 0.00 108.00 59,736
Days with temperature 20°C to 22°C 19.67 11.71 0.00 94.00 59,736
Days with temperature 22°C to 24°C 14.44 12.19 0.00 73.00 59,736
Days with temperature 24°C to 26°C 8.97 10.92 0.00 66.59 59,736
Days with temperature 26°C to 28°C 4.53 7.84 0.00 59.69 59,736
Days with temperature 28°C to 30°C 1.79 4.48 0.00 60.00 59,736
Days with temperature > 30°C 0.72 4.16 0.00 138.00 59,736
Precipitation, January (mm) 93.97 111.25 0.00 1105.97 59,736
Precipitation, February (mm) 82.35 95.97 0.00 1029.14 59,736
Precipitation, March (mm) 82.19 89.87 0.00 1050.68 59,736
Precipitation, April (mm) 59.67 52.49 0.00 517.51 59,736
Precipitation, May (mm) 49.97 45.40 0.00 378.93 59,736
Precipitation, June (mm) 34.06 35.96 0.00 409.98 59,736
Precipitation, July (mm) 27.25 32.43 0.00 373.40 59,736
Precipitation, August (mm) 29.58 33.45 0.00 355.19 59,736
Precipitation, September (mm) 33.23 37.21 0.00 426.14 59,736
Precipitation, October (mm) 57.00 61.53 0.00 723.52 59,736
Precipitation, November (mm) 82.34 104.61 0.00 1368.46 59,736
Precipitation, December (mm) 107.81 128.45 0.00 1660.68 59,736

Table A2: Summary statistics. Observations at the zip code by year level for all zip codes in the Western US.
Data on forest health are from the US Forest Service and climate controls are from the Climate PRISM Group. See
SI Appendix C.4 for details on ecosystem service outcomes.



A.3 Forest health data

I obtain data on annual tree mortality from the Insect and Disease Survey (IDS). The IDS is a

collection of geospatial data that maps the extent of damage from insects, disease, and other types

of forest disturbances. The data is collected by the USFS’s Forest Health Protection (FHP) unit and

partners in State agencies using low-altitude aerial surveys and ground surveys. Trained observers

visually scan 5km-wide swaths of forest as they fly along a grid pattern. Using digital mobile sketch

mapping (DMSM) tablets, areas with damaged trees are recorded as spatial polygons. I use these

mortality polygons, in combination with spatial information on the extent of forest cover from the

National Land Cover Database (NLCD), to construct the primary measure of tree mortality used

in this analysis: the percent of forest cover with tree mortality. Alternatively, one could measure

tree mortality in absolute area (acres). I show the robustness of my main results to this alternative

measure in SI Appendix B.4.

The core benefit of the IDS data is that it provides annual observations covering nearly all

forested areas in the Western US. There are two important limitations to this data. First, all mea-

surements are approximate “footprint” areas, which delineate areas of visible damage. Unaffected

trees may exist within the mortality polygons, and the amount of damage within the footprint is

not reported prior to the year 2014. That is, tree mortality is measured in acres of forested area

in which damage has been detected rather than a more precise measure such as basal area loss.

Second, because the data collectors differ across locations and years, there is substantial variation

in how areas of damage are recorded. For example, one operator may outline one polygon encom-

passing a large area with tree mortality, while another operator may delineate the same area using

many smaller polygons around the precise locations in which the mortality is concentrated. Section

B.3 discusses the robustness of my estimation approach to these two sources of measurement error.

I complement the tree mortality data with spatial information on the biological range bark bee-

tles from the Forest Inventory and Analysis (FIA) unit’s National Forest Damage Agent Range Map

(USFS, 2019b). The FIA uses ground surveys to estimate the amount of “basal area” (area of land

occupied by tree trunks) with damage attributable to bark beetles. Bark beetle damage is usually

easy to identify for trained surveyors as beetles leave unique signatures, including characteristic

fading patterns of the tree crowns (Figure A1A), pitch tubes or brown boring dust on the outside of

the bark, and galleries beneath the bark (Figure A1B). Although the Damage Agent Range Map is

only available in the cross-section for the year 2012, it allows me to construct a proxy measure for

bark beetle prevalence in each location (Figure A1C). I define bark beetle prevalence as the percent

of total basal area on which bark beetles have been detected. Across location, the mean level of

bark beetle prevalence is 6.6%.

37



Percent of basal area
with beetle damage 

> 20%

15-20%
10-15%

5-10%

< 5%

No beetles

C   Bark beetle prevalenceA   Red-brown tree crowns

B   Bark beetle galleries 

Figure A1: Data on bark beetle prevalence from the National Damage Agent Range
Map. Estimates of total basal area loss attributable to bark beetles were collected in 2012 by
the Forest Inventory and Analysis (FIA) unit using ground surveys. Surveyors are trained to
recognize the signatures of bark beetles, including red-brown tree crowns (A) and characteristic
galleries beneath the bark (B). I define bark beetle prevalence as the percent of total basal area
with damage from bark beetles (C).

A.4 Ecosystem service outcomes

Ecosystem services provided by forests can be separated into two broad classes: goods and services

that are priced in the market (e.g. timber) and non-market benefits (e.g. air quality improvement)

for which assigning economic value is more challenging. I measure the provisioning value of forests

using the per acre sales price of timber tracts on public land. This price captures the value of

forest products that can be harvested and sold in the market. I measure non-market benefits using

the hedonic pricing method, which quantifies willingness to pay for the amenity and environmental

quality benefits of healthy trees (see SI Appendix B.1 for details on the hedonic method).

Timberland value. I obtain transition-level records of sales conducted by the USFS, the Bureau

of Land Management (BLM), and state agencies from the Timber Data Company. These data

contain information on the date, location, and sales price, as well as detailed attributes of the

timber tract such as harvest acres, harvest volume, and estimated logging costs.

Home values. I examine capitalization of tree mortality into home values using data on the

prices of single-family residences from Zillow Research. Specifically, I use the zip code-level Zillow

Home Value Index (ZHVI) Single-Family Home Time Series data product, which measures typical
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home values within a zip code. The ZHVI is constructed from Zestimates, which Zillow regularly

calculates for more than 100 million individual homes nationwide. Zestimates incorporate data

from a variety of sources including public records, user-submitted data, and real estate data from

direct feeds or multiple listing services. More information on the ZHVI methodology is available

from Zillow Research at https://www.zillow.com/research/zhvi-methodology-2019-deep-26226/.

Air quality. I measure air quality using annual concentrations (in micrograms per cubic meter) of

ground-level fine particulate matter (PM2.5), with dust and sea-salt removed, from the the Global

Annual PM2.5 Grids from MODIS, MISR and SeaWiFS Aerosol Optical Depth (AOD) with GWR

(van Donkelaar et al., 2018). This data product is constructed by relating satellite-derived measures

of AOD to near-surface PM2.5 concentrations using the GEOS-Chem chemical transport model.

Specifically, Geographically Weighted Regression (GWR) is used in combination with ground-level

measurements of PM2.5 to predict PM2.5 concentrations on a 0.01 degrees resolution grid.

Flood damages. Data on flood damages come from the National Flood Insurance Program (NFIP)

Redacted Policies Dataset (Dombrowski et al., 2019). This dataset comprises the NFIP’s full claim

history and represents more than 2 million transactions. I construct the dependent variable as sum

of claims payments for property damage to buildings and their contents.

Wildfire burned area. I obtain data on the spatial extent of wildfires from the Monitoring Trends

in Burn Severity (MTBS) program (Eidenshink et al., 2007). The MTBS is an interagency program

conducted by the U.S. Geological Survey Center for Earth Resources Observation and Science and

the USDA Forest Service Geospatial Technology and Applications Center. The program maps the

burn severity and extent of large fires across the entire United States from 1984 to present. The

data set includes all fires with areas of 1,000 acres or greater in the western US.

A.5 Climate data

My estimation strategy requires high spatial and temporal resolution climate data to construct

the WSI and to capture non-linear relationships between climate, tree mortality, and ecosystem

services. I use daily temperature and monthly precipitation data from the PRISM Climate Group,

which provides gridded observations at 4km resolution. The PRISM Climate Group collects obser-

vations from a wide range of weather monitoring networks, applies quality control measures, and

then implements the PRISM (Parameter-elevation Relationships on Independent Slopes Model)

interpolation method to construct gridded datasets. The interpolation is done by calculating a

climate–elevation regression for each grid cell, where stations entering the regression are assigned

weights based primarily on the physiographic similarity of the station to the grid cell (Daly et al.,

2008).

In order to match the climate data with the information on tree mortality and ecosystem services,

I convert these measures to annual observations and aggregate them to the zip code level. To
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preserve inter-annual variability in temperature, I bin mean daily temperature into 2°C intervals,

such that for each location and year I have a count of the number of days with temperatures in the

range of 0°C to 2°C, 2°C to 4°C, 4°C to 6°C, and so on. I account for precipitation using second-

order polynomials in monthly precipitation as to allow for differential response to precipitation over

the course of the year. Because there are multiple grid cells per zip code, I aggregate grid-level

temperature and precipitation values to zip code-level observations weighing by treed area.

B Estimation methods

B.1 The hedonic pricing method

The hedonic pricing method is commonly used to estimate the economic value of non-market en-

vironmental goods and services. It is based on the insight that a consumer’s valuation of a dif-

ferentiated product, such as housing, is determined by the how much the consumer values its

individual characteristics. We can describe a house as a vector of its individual characteristics,

Q = (q1, q2, . . . , qn), including features of the home (e.g. number of bedrooms), neighborhood

amenities (e.g. local schools), and environmental quality (e.g. air quality). The price of the house

can therefore be written as a function of its characteristics, P (q1, q2, . . . , qn). The partial derivative

of the price function with respect to the nth characteristic, ∂P/∂qn, is the marginal price of the

nth characteristic implicit in the overall price of the house. This value represents the change in the

price of the home due to a marginal increase in the nth characteristic, holding all else constant.

Assuming that the housing market is competitive, equilibrium home prices are determined by

the interactions between buyers’ demand for housing and sellers’ supply of housing. The marginal

implicit price of a disamenity, such as tree mortality, gives the equilibrium differential that allocates

buyers across locations and compensates those who face higher levels of the disamenity. All else

equal, locations with higher levels of the disamenity must have lower housing prices to attract buyers.

Thus we can interpret the marginal implicit price of the disamenity as the consumer’s marginal

willingness to pay (MWTP) to for the disamenity, where a negative price indicates willingness to

pay to avoid the disamenity.

B.2 Instrumental variables and two stage least squares (2SLS)

Causal inference in the ecosystem services literature is challenging because it is rarely possible to

manipulate ecosystems at scale. In the absence of random assignment, studies linking changes

in ecosystem health to changes in ecosystem services may only measure the magnitude of the

association, rather than the magnitude and direction of causation which is needed for decision

making. To overcome this challenge, this study uses an instrumental variables (IV) approach to

generate quasi-experimental conditions.
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The goal of IV methods is to isolate a subset of the variation in the treatment that is as good as

randomly assigned. This is done by finding an “instrument” that is correlated with the treatment,

but that is otherwise independent of the outcome. That is, the instrument must only affect the

outcome through the treatment. I use days with temperatures below the supercooling point (SCP)

of bark beetles as an instrument for tree mortality. I show that in years with more days below the

SCP, fewer bark beetles survive the winter, resulting in significantly lower levels of tree mortality

that summer. Intuitively, this natural experiment allows me to compare a forest to itself in two

years with similar temperature and rainfall distributions, but in one year the forest is “treated”

with one additional day below the SCP and thus experiences less tree mortality. I implement this

approach using the two stage least squares (2SLS) estimator.

First-stage. The first stage estimates the relationship between the treatment and the instrument.

I estimate the impact of bark beetles on tree mortality, modeling the percent of forest cover with

tree mortality, M , as a linear function of bark beetle exposure, B. Bark beetle exposure is modeled

as the interaction between the winter survival instrument (WSI) and bark beetle prevalence (the

proportion of basal area on which bark beetles have been detected). The first-stage equation from

the main text can be simplified to

Mist = πBist + θXist + µist (8)

where Xist is a vector of covariates including controls for weather, zip code fixed effects, and state-

year fixed effects. In the 2SLS system, the first stage allows me to generate plausibly exogenous

changes in tree mortality caused by the discontinuity in bark beetle survival at the SCP. Mechan-

ically, this is done by taking the predicted values of tree mortality from this regression, M̂ist, and

using them in place of the actual values of Mist in the second stage.

Second-stage. The second stage estimates the relationship of interest, the effect of tree mortality

on ecosystem services. The second-stage equation is

Outcomeist = βM̂ist + θXist + εist (9)

where Outcomeist is one of the ecosystem service outcomes and all other variables are defined as

above.

Reduced-form. The 2SLS system also allows for the reduced-form estimation of the relationship

between the instrument and the outcome variable. That is, it estimates of the effect on bark beetle

exposure on ecosystem service outcomes. The reduced-form equation is

Outcomeist = γBist + θXist + νist (10)

If the identifying assumption holds, then bark beetle exposure is exogenous conditional on the
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covariates, so the estimate of γ can be interpreted as a causal effect. However, note that this effect

should run only through tree mortality.

Identifying assumptions. My IV approach requires two main assumptions: (1) the WSI causes

variation in tree mortality and (2) the WSI does not have a direct effect on the ecosystem services

(i.e. the WSI only affects ecosystem services indirectly through tree mortality). The first assumption

can be directly tested using the first-stage equation. The second assumption cannot be directly

tested; however, I provide evidence that the WSI is not simply picking up generic patterns between

climate and ecosystem services by conducting a placebo test that shows a null effect of the WSI in

forested areas without bark beetles.

B.3 First stage results

Dependent variable: Tree mortality

Full sample Property sample Timber sample

(1) (2) (3)

Bark beetle exposure 0.234∗∗∗ 0.240∗∗∗ 0.224∗∗∗

(0.020) (0.029) (0.035)

Observations 37,240 17,953 9,817
R2 0.523 0.584 0.551
F-statistic 130.9 69.6 83.4

Table A3: Effect of the instrument on tree mortality. The dependent variable is the percent
of forest affected by tree mortality. Bark beetle exposure is modeled as the interaction between pre-
dicted winter survival and baseline bark beetle prevalence (percent of basal area with damage from
beetles). Standard errors (in parentheses) are clustered by zip code and by state-year. Asterisks
indicate statistical significance at the 10% (*), 5% (**), and 1% (***) levels.

B.4 Robustness to measurement error in the tree mortality data

As discussed in SI Appendix A.3, there are two notable sources of measurement error in the tree

mortality data. First, all measurements are approximate “footprint” areas, which delineate areas

of visible damage and may also include live trees. Assuming this type of measurement error is

classical, it can lead to attenuation bias in the estimated effects (i.e. bias the effect of tree mortality

on ecosystem services towards zero). However, any instrument that is correlated with tree mortality

but uncorrelated with the level of measurement error will identify consistent parameter estimates.

Thus the use of the winter survival instrument alleviates concerns about imprecise measures of tree

mortality.
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Second, because data collectors differ across locations and years, there is considerable variation

in how areas of damage are recorded across surveys. We might be concerned that these systematic

differences in how surveys are conducted are correlated with either the treatment (tree mortality)

or outcome (ecosystem service). However, note that the inclusion of zip code and state-year fixed

effects in the regression equations ensure that my estimates are robust to systematic differences in

reporting across locations, which light arise from differences in how data collectors are trained by

different Forest Service offices, as well as state-level changes in survey procedures over time, which

might arise due to differences in funding across years.

B.5 Residual analysis

Estimation via ordinary least squares (OLS) requires the assumption that the values of the outcome

variable are normally distributed around each value of the treatment. We can check this assumptions

using residual plots, which display the value of the regression residuals as a function of the fitted

values. My model log-transforms four dependent variables — home values, particulate matter,

flood damages, and wildfire area — such that tree mortality has a multiplicative effect on these

ecosystem service outcomes. Figure A2 displays the residual plots for the linear model (left) and

log-transformed model (center). The log-transformed models appear to better satisfy the random

error assumptions OLS. The right column of Figure A2 plots the distribution of residuals for the log-

transformed model. Reassuringly, these residuals very closely approximate a normal distribution.
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Figure A2: Residual analysis. The left and center columns plot the regression residuals as a function of the fitted
values for the models where the dependent variable is specified in levels and logs, respectively. The right column
plots the distribution of the regression residuals for the model where the outcome is log-transformed, which is the
specification used in the main analysis.



C Robustness of the main results

C.1 An alternative measure of tree mortality

Dependent variable:

Timber Timber Log mean Log Log flood Log wildfire
tract value tract volume home values PM2.5 damages burned area

(1) (2) (3) (4) (5) (6)

Tree mortality acres −144.6∗∗∗ −222.72∗∗∗ −0.0012∗∗∗ 0.0007∗ 0.0056∗∗∗ 0.0020
(68.9) (456.1) (0.0003) (0.0004) (0.0015) (0.0014)

Observations 17,953 17,953 17,953 37,240 37,240 37,240

Table A4: Robustness to an alternative definition of tree mortality. I re-run Equation
4 but this time define the tree mortality treatment variable as the absolute area affected by tree
mortality (measured in thousand hectares) rather than as the percent of forest cover affected by
tree mortality. All regressions control flexibly for weather and includes zip code and state-year fixed
effects. Standard errors clustered at the state level are reported in parentheses. Asterisks indicate
statistical significance at the 10% (*), 5% (**), and 1% (***) levels.
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C.2 Alternative functional form assumptions
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Figure A3: Non-linear response of ecosystem services to tree mortality. I re-estimate Equation 4 specifying
the effect of tree mortality on ecosystem services using a third-order polynomial rather than restricting the response
to be linear. This figure plots ecosystem service outcomes a function of tree mortality using both approaches. As
in Table 1, coefficient estimates are multiplied by 100 for demonstration purposes for Panels B-E. Note that the
x-axis ends at 25% as this is the maximum level of tree mortality I observe in the data.



C.3 Sensitivity to withholding regional blocks of data
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Figure A4: Leave-one-out sensitivity analysis. This test re-runs Equation 4 eleven times, each
time dropping one state from the sample. The omitted state is indicated on the x-axis. Circles
show coefficient estimates and whiskers show 95% confidence intervals. As in Table 1, coefficient
estimates are multiplied by 100 for demonstration purposes in Panels B-E.
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C.4 Is there evidence of rapid regrowth after tree mortality?
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Figure A5: Transient response of ecosystem services and green vegetation to tree mor-
tality. (A) and (B) are repeated from Figure 4 and show the effect of temporal lags of tree mortality
on timber tract values (measured in price per acre) and log mean home values, respectively. (C)
Shows the effect of temporal lags of tree mortality on the Normalized Difference Vegetation Index
(NDVI), a simple indicator of live green vegetation.
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C.5 Comparison of forests with and without bark beetles

Forests Forests Difference p-value
with beetles without beetles of means from t-test

(1) (2) (3) (4)
Forest health data
Area affected by tree mortality (acres) 1,531 1,365 166 0.01
Forested area (acres) 94,001 50,435 43,566 0.00
Percent of forest with tree mortality (%) 1.17 1.07 0.10 0.00
Basal area with bark beetles (square feet per acre) 197.5 0 197.5 0.00
Total basal area (square feet per acre) 2,988 2,369 619 0.00
Bark beetle prevalence (%) 6.61 0.000 6.61 0.00
Indicator for bark beetles 1.00 0.00 1.00 0.00

Ecosystem service outcomes

Timberland value (price per acre) 6,083 7,290 −1,207 0.23
Harvest volume (thousand board feet) 3,029 2,663 366 0.31
Mean home values ($) 222,168 224,002 −1,834 0.43
Ambient PM2.5 concentrations (µg/m3) 2.50 5.47 5.48 −0.01 0.72
Flood insurance claims ($) 6,995 8,468 −1,474 0.35
Wildfire burned area (acres) 398 331 67 0.01
Observations 37240 22496

Table A5: Comparison of forests with and without bark beetles. Columns (1) and (2) show
mean values of forest health measures and ecosystem service outcomes in forests with and without
bark beetles, respectively. Column (3) shows the difference in means and (4) reports the p-value
from a Welch Two Sample t-test with the null hypothesis that the difference in means is equal to
zero.
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Figure A6: Comparison of climate in forests with and without bark beetles. (A) shows
the distribution of daily temperatures, in 2°C intervals, in the mean zip code with bark beetles
(green) as compared to the mean zip code without the pest (brown). (B) Same but for monthly
precipitation.
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D Valuating the social cost of tree mortality

To provide a sense of scale for the damages caused by tree mortality in the American West, I extend
my results to calculate the social cost of tree mortality that occurred over the sample period, from
1998 to 2018. I compute the social cost for each county in the Western US by multiplying the
estimated marginal effects by county-level annual tree mortality times location-specific measures of
the amount of people or capital affected. I use the following sources of data:

Timberland acreage: I obtain county-level data on the acreage of timberland sold each year from
the US Department of Agriculture’s Timber Product Output (TPO) reports.

Home values. I compute the value of the housing stock in each county by multiplying mean home
values from Zillow Research by housing counts from the 2010 census.

Air pollution exposure. I calculate damages from air pollution exposure using estimates of
the mortality cost of marginal increases in ambient PM 2.5 concentrations from Deryugina et al.
(2019). These authors estimate that cost of a 1 µg/m3 increase is $299,000 per million Medicare
beneficiaries. I obtain annual county-level data on the number of Medicare beneficiaries from the
Center for Medicare and Medicaid Service’s Medicare Enrollment Dashboard.

Flood damages. I calculate annual, county-level flood damages from the National Flood Insurance
Program’s Redacted Claims Dataset. This data provides a lower bound for flood damages as less
than 20% of the nation’s homes are covered under the program.

Wildfire damages. I calculate annual, county-level wildfire burned acres from spatial data pro-
duced by the Monitoring Trends in Burn Severity Program. I assume that each acre of burned area
causes economic damages of $1,500 as estimated by Mercer et al. (2000).
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